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Real-Time Analysis of Squat Form Using Computer Vision and Pose 

Estimation Techniques 

William Sakyi 

Summary  

The squat is a fundamental exercise performed daily that requires precise technique to avoid injuries. 

Traditional methods for learning correct squat form are often costly or lack real-time feedback, limiting their 

effectiveness and accessibility. This study addresses these limitations by developing an innovative real-time 

analysis system using pose estimation and machine learning technologies. The system employs the MediaPipe 

BlazePose model to capture and analyse squat motions frame-by-frame, extracting landmark data that is then 

evaluated by a Squat Classification Model (SCM). Based on a 1D convolutional neural network, the SCM 

assesses squat quality using three critical metrics: the optimal knee angle between 55° and 65°, correct gaze 

direction (forwards or upwards), and spine neutrality. Trained on the synthetic InfiniteForm dataset, the SCM 

achieved an overall accuracy of approximately 90% after 50 epochs, with the depth measurement showing 

particularly strong performance (average metric of 89.9%). However, the model was less effective at 

recognising incorrect gaze and spine alignments, with average metrics of 63.1% and 55.9%, respectively. Real-

world testing confirmed these findings, highlighting the model's robustness in depth classification but 

indicating areas for improvement in gaze and spine analysis. Future research will refine the SCM by utilising 

a more suitable dataset and extending the model's application to other exercises and sports, potentially 

enhancing training techniques and injury prevention strategies across various physical activities. 

Supervised by Dr M Valero  

Department of Mechanical Engineering 

University of Bristol  

2024 

  



2  

Declaration 

This project report is submitted towards an application for a degree in Mechanical Engineering at the 

University of Bristol. The report is based upon independent work by the candidate. All contributions from 

others have been acknowledged and the supervisor is identified on the front page. The views expressed within 

the report are those of the author and not of the University of Bristol. 

I hereby assert my right to be identified as the author of this report. I give permission to the University of 

Bristol Library to add this report to its stock and to make it available for consultation in the library, and for 

inter-library lending for use in another library. It may be copied in full or in part for any bona fide library or 

research worker on the understanding that users are made aware of their obligations under copyright 

legislation. 

I hereby declare that the above statements are true. 

 

 

© Copyright, William Sakyi 2024 

Certification of ownership of the copyright in a dissertation presented as part of and in accordance with the 

requirements for a degree in Mechanical Engineering at the University of Bristol. 

This report is the property of the University of Bristol Library and may only be used with due regard to the 

author. Bibliographical references may be noted but no part may be copied for use or quotation in any published 

work without prior permission of the author. In addition, due acknowledgement for any use must be made. 

 

Contents 

1 Introduction ............................................................................................................................................3 

1.1 Background Information .................................................................................................................3 

1.2 Project Aim and Objectives ............................................................................................................3 

2 Literature Review ...................................................................................................................................3 

2.1 Squat Mechanics .............................................................................................................................3 

2.2 Sensor Technology .........................................................................................................................4 

3 Method ....................................................................................................................................................7 

3.1 Machine Learning Platform ............................................................................................................7 

3.2 Dataset ............................................................................................................................................7 

3.3 Squat Classification Model (SCM) ...............................................................................................10 

3.4 Method Summary .........................................................................................................................14 

4 Results ..................................................................................................................................................14 

5 Discussion .............................................................................................................................................17 

5.1 Review of Project Objectives .......................................................................................................17 

5.2 Limitations ....................................................................................................................................17 

5.3 Future Work ..................................................................................................................................18 

6 Conclusion ............................................................................................................................................18 

7 References ............................................................................................................................................19 

 



3  

1 Introduction 

1.1 Background Information 

The squat is one of the most fundamental and beneficial exercises. It is also a common movement carried out 

daily (e.g. picking a box off the floor). It engages all the muscles in the lower extremities and the posterior 

chain [1]. However, it is also a very technical exercise, requiring correct form to minimise the risk of injury 

and increase the amount of muscle activation. A popular way to learn the proper form is to hire a personal 

trainer (PT) who would be experienced and qualified to teach correct form. With the presence of a PT, a trainee 

can be assured that they will learn the correct form and technique while receiving immediate feedback. 

However, one key drawback is the price of a PT. The average cost of a PT for a 60-minute session in the South 

West of England is £45-£90 [2]. The high price of hiring a personal trainer has given rise to self-taught methods 

of learning exercise techniques. Especially during the COVID-19 pandemic, people have turned to online 

means such as YouTube to learn essential exercise techniques [3]. YouTube channels such as Squat University 

which is run by Dr Aaron Horschig, who has a doctorate in physical therapy [4] can provide safe and reliable 

information. However, using such methods again has its drawbacks. The lack of real-time feedback drastically 

increases learning time and the risk of injury. The most effective way to learn correct technique is to first be 

shown the exercise and then attempt it while receiving real-time feedback for safety and efficiency. There are 

various versions of the squat (barbell back and front squats, bodyweight squats); however, in this paper, 

bodyweight squats will be the focus. 

1.2 Project Aim and Objectives 

This project aims to use sensor technology to develop a cheap, easy and accessible way for a person to speed 

up the squat form learning process. To achieve this aim, a set of objectives have been devised: 

1. Define metrics to quantitively assess a person’s squat form. This will allow any analysis method 

to have accurate metrics to judge against. 

2. Conduct a review of current sensor technology. This will determine the current state of the art and 

allow for the selection of suitable sensor technology. 

3. Develop a system for real-time analysis of a user’s squat that is available to anyone. The squat is 

a universal movement, and anyone should be able to learn how to perform it. The system should be 

suitable for all body types and be simple to use with a short learning curve. The squat analysis should 

be real-time to allow users to gain instant feedback to decrease learning time. 

2 Literature Review 

2.1 Squat Mechanics 

To develop a solution to assess squat form, the aspects of a good squat needed to be first established. There 

are multiple components of a squat that contribute to its overall quality. Suchomel, Comfort and McMahon, in 

their paper [1] have stated key findings on what parts of a squat form affect muscle activation and safety. 

Firstly, a squat depth where the knee angle is between 55° and 65° (measured as the angle between the thigh 

and shin) results in the maximum amount of muscle activation in the quads and glutes. This was the case as 

long as a neutral spine was maintained throughout the movement. A neutral spine is defined as the zone where 

the passive spinal column offers minimal resistance [5]. A neutral spine is not necessarily a completely straight 

spine but tends to have the natural curves of the vertebral column. A neutral spine position ensures safety 

during movement as extra pressure is not applied to the back or neck. It was found that foot orientation and 

stance width (if greater than 75% shoulder width) had no bearing on the squat quality apart from the fact that 

they should be in a comfortable position for the trainee. A larger stance width, for example, may allow a person 

with longer femurs to squat deeper. Knee movement should be unrestricted (i.e. heels should be kept on the 

ground). Also, the trainee's gaze should be forward or upward but never downward. There is a strong 

correlation between hip flexion and gaze [6], a forward or upward gaze minimises undesirable flexion. Finally, 

the squatter’s knees should track over their toes without caving inwards. To help those learning a squat, PTs 

often prompt exercisers with physical cues to help an individual complete it optimally. For example, one 

popular cue for a squat is to brace your core.  
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Figure 1 - Features of an optimal squat [7]. 

For the remainder of this report, the five aspects that define a good squat are optimal depth, neutral spine, 

forward or upward gaze, heels on the ground and knees over toes. These features are shown in Figure 1. 

2.2 Sensor Technology 

There are various sensors that are used to monitor physical training. This includes some general sensors like 

smartwatches and fitness trackers that are already widely available. These do not provide accurate data for 

specific exercises like the squat but are very useful for general health tracking as they can monitor heart rate, 

calories burnt and steps taken [8]. There are also research and professional-grade sensors that provide much 

more accurate and detailed information and, in tandem with an algorithm, could provide information on squat 

technique. These sensors include Inertial Measurement Units (IMUs), Surface electromyography (sEMG) 

sensors, insole pressure sensors, Electrocardiogram (ECG) chest bands [9] and computer vision. sEMGs focus 

on measuring muscle activity, while ECG chest bands record cardiac output. Without a large amount of 

interpolation, these sensors cannot provide beneficial information for analysing squat form and, therefore, will 

not be considered. IMUs and pose estimation can provide positional data about a user’s entire body, which can 

be analysed to determine squat quality. 

2.2.1 Inertial Measurement Unit (IMU) 

An Inertial Measurement Unit (IMU) is a device that measures a body's acceleration, angular velocity, and 

rotation angle. It can measure up to 9 degrees of freedom using a combination of a gyroscope, accelerometer 

and magnetometer.  

 

Figure 2 - An IMU based on three types of sensors [10]. 

Figure 2 shows an IMU based on three types of sensors and how the data received from each sensor combines 

to provide accurate output data. This output data is then fused together using various filter algorithms, such as 

the Kalman Filter [11]. This allows for orientation, position and velocity data to be extracted and used. 

In the context of squat form classification, IMUs have been used before to classify squats. The approach was 

done by Lee et al. in a 2020 paper [12] where they placed 5 IMUs on a participant (one on each thigh and calf 
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and one on the lumbar region) and recorded sensor data while the participants performed a squat. After, the 

data was used as an input for a Deep Learning (DL) model and a Random Forest Machine Learning (ML) 

model to evaluate the squat. It was found that the DL and ML models had an accuracy of 91.7% and 75.4%, 

respectively.  

IMUs are well-established technology dating back to the 1930s [10] and therefore there is a lot of research 

behind it. However, uptake by health professionals is low and this is largely because IMUs have been 

developed with mainly researchers in mind without involving the opinion of clinical end-users [13]. For 

example, the usability of IMUs have been neglected. There is not much customisation and interacting with the 

data it provides is complicated with further processing being required. A sole exerciser trying to improve their 

squat form on their own would not be able to use a set of IMUs without difficulties. Also, IMUs are high-

priced; the one used in the 2020 paper cost about £280 per IMU [14]. 

2.2.2 Computer Vision and Pose Estimation 

Computer vision is a field of computer science and AI that attempts to enable computers to identify and 

understand objects and people in images and videos [15]. Human Pose Estimation (HPE), a sub-field of 

computer vision, is the task of predicting the joints of a human (called keypoints or landmarks) from an input 

image or video. To maintain consistency, the most common keypoint output is the 17-point skeleton developed 

for the COCO dataset. Common Objects in Context (COCO) [16] is a large-scale object detection, 

segmentation and captioning dataset developed by Microsoft. COCO also includes HPE data, so using a 

consistent skeleton allows for synergy in the pose estimation research field. The output from pose estimation 

models can be further processed for various applications, including video surveillance, medical assistance and 

sports motion analysis [17]. In the context of squat form analysis, a pose estimation model can be used to 

extract keypoints data from a video or image, which can then be fed into a classification model to determine 

the quality of the squat. 

Pose detection has been used in health and fitness before. Both in yoga to detect yoga poses [18,19] and in 

sport and physical exercise [20–22]. It has also been used for measuring gait kinematics [23]. In a 2022 paper 

by Youssef et al. [24] machine learning was used to analyse the squat exercise. This was done by using a pose 

estimation model (namely BlazePose [25]) to extract keypoints data for an entire squat repetition. For each 

frame of the rep, they computed a 33 × 33 difference matrix that contained all the distances between keypoints. 

The difference matrix for each frame of the squat rep was then combined. The set of 33 × 33 matrices were 

then fed into a convolutional neural network. The model achieved a 96% accuracy when classifying a squat. 

The report mentions the possibility for use in real-time, however, since the full squat repetition needed to be 

completed before the squat could be analysed, this meant that although, feedback was fast, it cannot be live. A 

user, therefore, cannot adjust their squat live but must wait until they complete the full repetition before they 

can adjust. This limits a person’s ability to determine which part of their squat is faulty. 

 

Pose estimation is the method that will be used for squat form analysis in this report. Using pose estimation 

aligns highly with the project's aim to develop a cheap, easy-to-use method for anyone to assess their squat. 

All that is required from the end-user is a mobile phone camera, which 87% of UK adults have [26]. The 

analysis method that will be used will be a frame-by-frame method, where each individual frame will be 

considered a data point, and the model or algorithm will take the landmark data from a single frame as its 

input. This will allow for near-instant feedback to the user. It will also simplify any models developed, as the 

temporal domain will not have to be considered. 

2.2.2.1 Comparing Different Pose Estimation Models 

Various pose estimation models have been developed. Selecting the correct one for this use case was important. 

To select a model, various metrics were considered and a Pugh matrix was used to decide. The metrics used 

are shown in  Table 1. A model with 3D output dimensions could be useful as any further model or algorithm 

may be able to pick up patterns that are only noticeable in 3 dimensions. A fast frame rate would improve the 

performance of the model. One of the project objectives is to have real-time analysis; a fast model will allow 

for this. The average percentage of detected joints (PDJ) information was obtained from a 2022 paper by 

Chung, Ong and Loew, who completed a comparative study of skeleton-based human pose estimation [17]. In 

this study, they compared OpenPose [27], PoseNet [28], MediaPipe BlazePose [25] and MoveNet [29] models. 

The release year of the model was also considered, as machine learning models tend to improve with time. 
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Training a complex model can take a substantial amount of time; therefore, those released more recently will 

have had more time to train and be of better quality. 

Table 1 - Key performance metrics of various pose estimation models. 

Metrics Metric Description OpenPose PoseNet MediaPipe 
BlazePose 

MoveNet 
Lightning 

Output Dimensions The output type of the 
keypoints data 

2D [27] 2D [28] 3D [25] 2D [29] 

Performance/Speed 
(fps) 

The framerate at which 
the model runs on 
similarly powered 
machines 

34 [30] 51 [31] 92 [32] 104   [33] 

Average Percentage 
of Detected Joints 
(PDJ) (%) [17] 

In the referenced paper, 
the percentage of joints 
that were detected in a 
series of tests 

37.18 65.95 68.47 69.85 

Maximum Number 
of Keypoints 

How many keypoints the 
model can detect 

135 [27] 17 [28] 33 [25] 17 [29] 

Release Year The year the model was 
released 

2017 [27] 2017 [28] 2020 [25] 2021 [29] 

 

Table 2 - A Pugh matrix comparing the HPE models based on key metrics. 

Criteria PoseNet 
(Datum) 

OpenPose BlazePose MoveNet 
Lightning 

Output Dimensions 0 0 1 0 

Performance 0 -1 1 1 

Average PDJ 0 -1 1 1 

Number of Keypoints  0 1 1 0 

Release Year 0 0 1 1 

Total  0 -1 5 3 

Table 2 shows the selection matrix that was used to decide the best HPE model. The comparison metrics 

defined in Table 1 were compared to quantitatively determine the best model. MediaPipe BlazePose was the 

best and was used due to its 3D output, relatively high performance, and greater number of keypoints. It was 

also one of the more recent models. 

2.2.2.2 MediaPipe BlazePose 

MediaPipe BlazePose is a lightweight convolutional neural network (CNN) architecture for human pose 

estimation that was developed by Google Research [25]. BlazePose runs a top-down pipeline. This means the 

model identifies each person instance within a frame and bounds them in a box before identifying the keypoints 

for each person instance. This is opposed to a bottom-up approach where all keypoints in an image are first 

found and then grouped into the different person instances of that image. BlazePose works by taking an image 

or video (array of images) as an input and returning a set of keypoints in the shape (33,4) for each image.  
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(a) 

 

(b) 

Figure 3 - BlazePose skeleton with all the identifying landmarks (a) and an example output of the BlazePose model (b). 

Figure 3a shows the 33 landmarks that the model outputs. Each landmark has 4 features. These are the 

normalised x, y, z coordinates, which have an origin at the centre of the hips, and a visibility (v) confidence 

score. An example of the BlazePose model’s output is shown in Figure 3b. The 33 landmarks the BlazePose 

model uses are a superset [25] of BlazeFace [34], BlazePalm [35] and the 17-point COCO skeleton. 

3 Method 

A method to classify squats was developed using a ML pipeline that classified squats based on the flaws they 

contained. The model is described as follows: the BlazePose model will take an input frame, it will then output 

normalised landmark data which will then be fed into a Squat Classification Model (SCM) that will classify 

the squats. 

 

Figure 4 - Overview of the machine learning pipeline. 

An overview of the proposed pipeline is presented in Figure 4. The model returns a 1 or 0 for each label (squat 

metric category) depending on whether it has detected an errancy with that part of the squat.  

3.1 Machine Learning Platform 

The machine learning platform that was used was TensorFlow (TF). TensorFlow is an end-to-end open-source 

machine learning platform developed by Google. TF was chosen above Pytorch and Scikit Learn due to its 

simplicity and the option to use the high-level Keras API, making it easy for a beginner to create ML models. 

MediaPipe BlazePose was also developed by Google, which meant that using TF would provide a seamless 

development experience. 

3.2 Dataset 

To train the model, a dataset of squats was needed so that the model could learn how to classify squatting 

errors. The dataset selected was InfiniteForm [36] created by InfinityAI. InfiniteForm is a synthetic, minimal-

bias dataset for fitness applications. It is a dataset created using Blender and a physics-based rendering engine 

with raytracing to emulate photo-realism. This dataset was used as it was large and well annotated, making it 

suitable for training. It also introduced a large amount of body shape variance that could be difficult to recreate 

through a self-created dataset. An example of the dataset is shown in Figure 5. The entire dataset contained 

other exercise movements however, only the bodyweight squat dataset was used for the SCM. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5 – An example squat dataset without any annotations (a) with the COCO keypoints annotations (b), armature keypoints 

annotations (c) and BlazePose landmarks (d). 

The Fitness Basic Squat Dataset [37] contained 100 separate videos of various person models completing a 

squat. Factors such as location, lighting conditions and camera angle varied between videos. Within each video, 

there were 5-10 reps each. The dataset contained variance between each rep to the point where no two squats 

were the same, emulating the same variance an actual person would have when performing an exercise. 

Alongside each video, the dataset included a .JSON file that contained a vast amount of annotation data. This 

annotation data included 2D 17-point COCO skeleton data (Figure 5b) and 3D 55-point armature keypoints 

data (Figure 5c). To maintain consistency between training and deployment of the SCM, the BlazePose model 

was run on the entire squat dataset, and that data was used instead of the already provided annotations for 

training, validation and deployment. 

3.2.1 Labelling the Dataset 

The SCM worked by classifying each frame according to errors within the squat. The InfiniteForm dataset 

contained a total of 38,692 different frames. Labelling the data manually frame by frame would have been too 

time-consuming; therefore, several scripts in tandem with the annotations provided by the InfiniteForm dataset 

were used to label the data. The classification categories by which the squats would be classified were selected. 

These were selected from the 5 aspects of a good squat defined in section 2.1, and they were selected based on 

whether it was possible to label them using scripts and the annotation data. The depth of the squat, the gaze 

direction and the neutrality of the spine were the chosen metrics. As the squat analysis was defined as a 

classification problem, binary labels were used to label the dataset. 

 

Figure 6 - BlazePose skeleton in 3D space with knee angle and face plane visible. 
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3.2.1.1 Squat Depth 

The optimal squat depth requires the angle between the shin and thigh to be between 55° and 65°. Using the 

3D BlazePose keypoints data and the dot product rule, knee angle can be calculated for each frame. The dot 

product is shown in Equation 1: 

𝑎 ⋅ 𝑏 = |𝑎||𝑏|𝑐𝑜𝑠(θ)  (1) 

where 𝑎 and 𝑏 are direction vectors and θ is the angle between the direction vectors. In the context of knee 

flexion angle, 𝑎 and 𝑏 represent the thigh and shin bone, respectively, as shown in Figure 6. 

The average angle of both knees was found, and the frame was labelled with a 1 if the squat was at the correct 

depth or a 0 if the squat was not deep enough.  

3.2.1.2 Gaze Direction 

The gaze of a squatter throughout the movement should be forward or upwards. To determine this, the angle 

between a face plane and the vertical was calculated. A face plane was created with 3 points on the face (the 2 

eyes and nose) as shown in Figure 6. The angle is then calculated as: 

𝑠𝑖𝑛(θ) =
𝑛 ⋅ 𝑣

|𝑛||𝑣|
  (2) 

where 𝑣 = (0, −1,0) is the vector direction of vertical and 𝑛 is the normal to the face plane. 𝑛 is found as the 

cross product of the direction vectors: 

𝑛 =  𝑐 × d (3) 

where 𝑐 and 𝑑 are direction vectors to each respective eye from the nose as shown in Figure 6. 

The gaze angle for each frame was then found. If the gaze was down and the angle was negative the frame was 

labelled with a 1. Otherwise, the gaze was deemed ok and labelled with a 0. 

3.2.1.3 Spine Neutrality 

A squatter’s spine should stay neutral throughout the entire movement to maintain a rigid trunk, preventing 

injury and increasing a person’s load capacity. The armature keypoints (Figure 5c) contain position data for 3 

points on the spine (top, middle, bottom). Linear regression was used to determine the “straightness” of the 

back during squatting. This was done by evaluating the 𝑅2 factor from linear regression of the 3 spine points. 

After evaluating the data and results of this linear regression, it was deemed that an 𝑅2 factor of 0.4 was a 

sensible limit to deem a user’s spine not neutral. This value was selected after analysing a small sample of 

squats. Examining by eye showed that the squats that had an 𝑅2 value greater than 0.4 were distinctly not 

neutral. 

3.2.1.4 Labelling Results 

After running the BlazePose model, it was found that 3,377 frames were not useable as the model could not 

generate keypoints due to low visibility. This meant that the total number of frames used for training was 

35,315. 8.75% of the frames had a depth in the correct range, 2.68% had a bad gaze direction and 0.23% had 

a spine that wasn’t neutral. This is visualised in Figure 7 and it shows that the data is heavily skewed.  

 

Figure 7 - Visual representation of the labelling results. 
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3.2.2 Preprocessing  

The dataset currently consists of 2 large arrays of shapes (35315,33,4) and (35315,4) containing the landmark 

data and label data, respectively. Before the dataset could be used for training and validation, pre-processing 

was required. To be able to use the data in TF, a TensorFlow Dataset object was created. This combined the 

features (landmark data) and labels into a single TF Dataset. The dataset was split into training data and 

validation data via an 80%/20% split. Then, the dataset was placed into batches of 32. A batch size of 32 was 

selected as it is the most commonly used batch size in ML applications [38]. Batching helps manage memory 

usage and provides computational efficiency. 

Model weights were applied to each category to compensate for the class imbalance of the data. To apply the 

weights, the ratio between the binary labels for each category was found. The model was then penalised by a 

factor that was inversely proportional to that ratio. For example, for the depth category, if the model incorrectly 

predicts a squat that is in range, it will be penalised by a factor 10.4 times greater than if it incorrectly predicts 

a squat that is out of range. This forces the model to pay more attention to patterns amongst minority classes 

to avoid being heavily penalised, resulting in a better-trained model. 

3.3 Squat Classification Model (SCM) 

The aim of the Squat Classification Model (SCM) was to determine the relationship between input landmark 

data and their classification. Due to the nature and complexity of the problem, a neural network was used. 

Neural networks are a series of algorithms designed to recognise relationships between input data and output 

classification [39]. Neural networks can vary vastly and can solve almost any data-driven problem. The layers 

suitable for the SCM specifically, needed to be determined. It was found that the model would consist of 2 

convolutional 1D layers, a flatten layer to flatten all the parameters into a single dimension, and a dense layer 

which was connected to the output layer. This was a multi-label classification problem, which meant that the 

SCMs 3 output labels (depth, spine, gaze) are not mutually exclusive, and a frame can contain any combination 

of them. 

 

Figure 8 – A flow chart summary of the Squat Classification Model. 

Figure 8 shows all the layers in the SCM and how they flow together to create the model. Each block contains 

a description of the layer’s name, its activation function and the input and output shapes of the data it receives. 

The flow chart also shows the auxiliary layers of the model. 

3.3.1 Layers 

3.3.1.1 Input Layer 

This layer takes the input data and feeds it into the model. The input of this layer has the shape (32,33,4), 

representing the batch size, the 33 landmarks, and the 4 features (x, y, z, v) for each of those landmarks. 
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3.3.1.2 Convolutional 1D (Conv1D) layers 

The SCM has 2 1D Convolutional Neural Network (CNN) layers. 1D CNNs are a type of neural network that 

is used for processing sequential data and can detect patterns within them. A CNN has a kernel which “slides” 

across the data performing the convolution operation. The convolution of two discrete functions is defined as:  

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑘] 𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 
(4) 

where 𝑛 is the sequence index and 𝑘 is the summation index which shifts 𝑔 across 𝑓. In the context of the 

SCM, 𝑓 is the landmark data while 𝑔 is the kernel matrix. 

The kernel is a separate matrix whose size is defined during model creation. The convolution of the data and 

the kernel allows the layer to detect patterns. For each Conv1D layer, the number of filters is also defined. This 

specifies the different number of kernels that should be created. Various kernels are created to pick up the 

different patterns within the data. 

 Compared to 2D CNNs, which are used to process data with higher dimensions (images or videos), 1D CNNs 

are much less computationally intensive. For an image with 𝑁 × 𝑁 dimensions and a 𝐾 × 𝐾 kernel size, it 

would have a computational complexity ~𝑂(𝑁2𝐾2) whereas a 1D equivalent would have a complexity of 

~𝑂(𝑁𝐾) [40]. Therefore, in situations that do not require a 2D CNN, a 1D should be used for better 

performance.  

In the context of the SCM, a 1D CNN was used due to the format of the data. The set of keypoints were 

sequential in nature. Figure 9 visualises the first Conv1D layer of the SCM. It shows how a kernel would 

convolve over it and pick up patterns. A kernel size of 3 was selected and Figure 9 shows what that means for 

the convolution operation in the first layer. A pattern that a specific kernel may recognise, for example, is the 

relationship between the hip, knee and ankle landmarks and the squat depth label. 

 

Figure 9 – A visualisation of the first Conv1D layer of the SCM. 

3.3.1.3 Dense Layer 

This is the most basic neural network layer, where every input neuron is connected to each output neuron. Each 

dense layer neuron contains a vector of weights corresponding to each input neuron that is connected to it. 

Weights determine the connection strength of each input. Each neuron has a bias value that shifts the neuron's 

output, enabling finer adjustments to the overall function of the network. A dense layer calculates the output 

of each output neuron via Equation 5:  

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛((𝑤 ⋅ 𝑥) + 𝑏) (5) 

where 𝑥 is the input vector to the neuron, 𝑤 represents the weights vector, 𝑏 is the bias. 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 is a function 

that introduces nonlinearity to the model (see section 3.3.2).  

A dense layer was selected for the SCM as it works as a bridge between the convolutional layers and the output 

layers. The dense layer finds relationships between the patterns found by the convolutional layers and the 

outputs. Figure 10 shows the dense layer configuration of the SCM. It shows the nodes after the data has been 
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flattened and how it is connected to the 128 nodes of the dense layer which are then connected to the output 

layer. 

 

 

Figure 10 – The flatten, dense and output layers of the SCM. 

3.3.1.4 Output Layer 

For the SCM, the output layer contains 3 neurons, one for each squat classification category: depth, spine, and 

gaze. Each of them are activated independently by a sigmoid function (see section 3.3.2.1) and can each return 

a value between 0 and 1. Figure 10 shows how the output layer is connected to the dense layer. 

3.3.1.5 Auxiliary Layers: Batch Normalisation, Dropout and Flatten 

Auxiliary layers do not perform any primary computations essential to the model's function but rather support 

the core layers to improve the model’s performance.  

Batch normalisation layers are placed after each convolutional layer and before the dense layer to normalise 

the outputs from the previous layer, aiming to maintain a mean output close to 0. Since each of these layers 

include activation functions that introduce non-linearity to the model, internal covariate shift [41] can occur. 

This shift refers to the changes in the distribution of layer inputs as the network's weights and biases are updated 

during training. As the model learns, these updates can cause unpredictable shifts in the data each layer 

processes. By reducing this shift, batch normalisation helps stabilise and accelerate training, making the model 

more efficient. 

Dropout layers help prevent overfitting. Overfitting is when a model adapts so much to the training data that 

it can get an effectively perfect accuracy during training, but when it is presented with new data it hasn’t seen 

before, it cannot adapt and has a much poorer accuracy. Dropout works by randomly choosing neurons to omit 

during the training process, meaning that these neurons do not contribute to the model’s output [42]. During 

testing, however, the entire network is used, and neurons’ outputs are scaled down based on whether they were 

dropped out during training. In this model, a dropout probability of 50% was used. 50%  was selected as this 

would result in the highest amount of regularisation [43].  

Flatten layers “flatten” multidimensional outputs from the previous layer into a single 1-dimensional vector. 

In the SCM, the dense layer requires a 1-dimensional input so the flatten layer reshapes the data from (33,64) 

to (2112). This allows for a proper connection between the convolutional and dense layers. 

 

3.3.2 Activation Functions 

Activation functions are mathematical equations that determine the output of a neural network neuron. This is 

done by applying the desired function to the weights and bias calculations of each neuron (see Equation 5). 

The primary purpose of activation functions is to introduce non-linearity, which allows the model to learn non-

linear relationships. Activation functions can also normalise outputs into a desirable range of values. There are 

multiple types of activation functions. The two activation functions used in the SCM are the sigmoid function 

and the Rectified Linear Unit (ReLU) function. These functions are shown in Figure 11. 
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(a) 

 

(b) 

Figure 11 - Graphical representation of the Sigmoid function (a) and ReLU function (b). 

. 

3.3.2.1 Sigmoid Function 

The sigmoid function maps any input value to a value between 0 and 1. This means that sigmoid functions are 

used for binary problems. The sigmoid function is defined as:  

𝑓(𝑥) =
1

(1 + 𝑒−𝑥)
 

(6) 

This output is shown in Figure 11a. There are, however, some limitations to sigmoid functions, for very large 

or very small input values the output becomes very close to 1 or 0 and therefore loses its sensitivity to small 

changes in input. Also, the sigmoid function suffers from the vanishing gradient problem [44] at those values. 

The vanishing gradient problem arises in activation functions with a gradient that tends to 0 at very large or 

very small inputs. Due to the way a model back-propagates, this problem causes a model to learn slowly. In 

the context of the SCM, a sigmoid function will be used for each output neuron to classify the squat in a binary 

fashion. 

3.3.2.2 Rectified Linear Unit (ReLU) Function 

In the SCM, the ReLU activation function is used for both Conv1D layers and the dense layer, as it is a 

relatively simple but effective function. It overcomes the vanishing gradient problem mentioned previously. 

When the function is activated (𝑥 > 0) the gradient is always equal to 1 and never vanishes, allowing for faster 

convergence.  The ReLU function introduces non-linearity into the network, allowing the SCM to learn non-

linear relationships between the landmark data and the outputs. The ReLU function is shown in Figure 11b 

and is defined as: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥) (7) 

3.3.3 Machine Learning, Loss and Back Propagation 

There are various steps a model takes to learn effectively. These include a forward pass, loss function 

calculation, backpropagation, and then optimisation. This is iterated over many epochs (iterations), decreasing 

the loss value with each epoch until convergence. 

3.3.3.1 Forward Pass 

During the forward pass stage, the input data is fed into the model and the model computes an output based on 

the current weights and biases. This output is the prediction for that epoch. 

3.3.3.2 Loss Function Calculation 

The loss function calculates the error of a model prediction. The error is how far off a prediction is from the 

ground truth, this is shown mathematically as:  

𝐿𝑜𝑠𝑠 = 𝑎𝑏𝑠(𝑌𝑝𝑟𝑒𝑑 − 𝑌𝑎𝑐𝑡𝑢𝑎𝑙) (8) 
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 As the model trains it aims to minimise the value of the loss function. There are different loss functions that 

can be used depending on the problem. In the case of the SCM, there are 3 labels (depth, spine, gaze) that have 

each been labelled in a binary fashion. Cross-entropy loss functions, in general, are used for binary 

classification problems. There are 2 types of cross-entropy loss functions: Binary Cross-Entropy (BCE) and 

Categorical Cross-Entropy (CCE) functions. BCE was selected as opposed to CCE as it is more suitable for 

multi-label classification problems in which the output can be any combination of the categories. On the 

contrary, CCE is used for multi-class classification problems in which the output can only be a single class.  

The BCE loss function is defined as: 

𝑙𝑜𝑠𝑠𝐵𝐶𝐸 = −
1

𝑁
∑ ∑(𝑦𝑖𝑗 log(𝑝𝑖𝑗) + (1 − 𝑦𝑖𝑗) log(1 − 𝑝𝑖𝑗))

𝑀

𝑗=1

𝑁

𝑖=1

 
(9) 

where 𝑁 is the number of samples, 𝑀 = 3 is the number of classes. 𝑦𝑖𝑗 represents the ground truth label for 

that sample and class and 𝑝𝑖𝑗 represents the respective model prediction. This function allows the loss to be 

calculated at every epoch.  

3.3.3.3 Back Propagation and Optimisation 

Once the loss has been calculated, back propagation is used to propagate the loss back through the network to 

update the weights and biases. This is done by calculating the gradient of the loss function with respect to each 

weight and bias in the network. This gradient specifies in which direction the weights and bias should be 

adjusted to minimise loss. The calculation is done in reverse from the output to the input layer applying the 

chain rule to determine the relationship between the loss function and a specific neuron’s weights and bias. 

To optimise the model, an optimisation algorithm is used. Gradient descent [45] is the simplest and works by 

using the gradient value of the loss function calculated during backpropagation to determine the direction of 

greatest descent. This determines how the weights and biases should be updated. 

The SCM was trained on a large dataset, so using gradient descent would have resulted in slow convergence. 

Adam (Adaptive Moment Estimation) is an extension of gradient descent. Adam has separate learning rates 

(step sizes) for each parameter, allowing for more efficient convergence. Therefore, it was chosen as the 

optimiser for the SCM.  

3.4 Method Summary 

To summarise, a synthetic dataset from InfiniteForm was used to train the data. The dataset was pre-processed 

and labelled to allow it to be used for training and validation. Squats would then be classified frame-by-frame 

using a ML pipeline. The pipeline will begin by detecting BlazePose landmarks, it will then be fed into a squat 

classification model. This model contained two Conv1D layers, a dense layer and an output layer. The output 

layer has 3 categories: depth, spine and gaze, and each frame will be classified as any combination of them. 

The model will learn and optimise the weights after every epoch to improve its performance. 

4 Results 

The model was run for a total of 50 epochs, totalling a training time of 11 minutes and 43 seconds. The loss 

value and accuracy were calculated for both the training data and the validation data at every epoch. These 

results are shown in Figure 12. The accuracy increased throughout training, settling at around 90% after 50 

epochs. The loss function value decreased over time, settling around 0.15. 
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(a) 

 

(b) 

Figure 12 - Accuracy (a) and Loss (b) plots of the SCM. 

Once the model had completed its training, it was run on a validation dataset. This was done to extract key 

metrics to determine the quality and effectiveness of the SCM in detecting depth, gaze and spine faults. 

A confusion matrix was used to show the effectiveness of the SCM. Confusion matrices allow for determining 

the type I and type II errors that are present. Figure 13 presents the confusion matrices for each output label. 

For the depth category, an output of 1 denotes that a squat is in the correct range of 55° to 65°. For the spine, 

an output of 1 identifies that a person’s spine is not neutral, and for the gaze, an output of 1 denotes that a 

person’s gaze is downwards. 

 

(a) 

 

(b) 

 

(c) 

Figure 13 - Confusion Matrix for the depth (a), spine (b) and gaze (c) labels. 

The confusion matrices show that most squat frames were predicted correctly. However, the model was more 

confused when trying to classify spine neutrality with 602 false positives. The results also reiterate the dataset’s 

imbalance. To further validate the model, evaluation metrics for each label were found. These were accuracy, 

precision, recall and F1 score. Each evaluation metric has its purpose in evaluating the SCM. Accuracy is the 

simplest and measures the proportion of true results among the entire validation set. Accuracy is a less useful 

metric in a dataset with large imbalances, such as the dataset used for the SCM. Precision determines the 

percentage of true positive events that were found by the model among all predicted positive cases. Recall is 

the ratio of true positively predicted events against all true positive events. In the context of the spine label, for 

example, recall shows the ratio of how many non-neutral spines the SCM detects against how many it fails to 

pick up. The F1 score is a weighted average of both precision and recall, allowing a balance to be struck 

between them. 
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Table 3 - Key Evaluation metrics. 

Metrics Depth Spine Gaze Average 

Accuracy 97.3% 91.4% 97.4% 95.4% 

Precision 77.3% 24.2% 9.2% 36.9% 

Recall 98.4% 98.0% 100.0% 98.8% 

F1 Score 86.6% 38.8% 16.9% 47.4% 

Average 89.9% 63.1% 55.9% 69.6% 

Table 3 shows all the evaluation metrics for each label. The SCM performed best for the depth label and 

performed worse for the gaze label. Overall, precision was the weakest metric. In comparison to a similar 

approach with IMUs [12], which had an accuracy of  91.7%, the average accuracy was slightly higher at 

95.4%. The low precision metric shows that there were a high number of false positives. The recall score for 

the gaze label is 100%, but it is worth mentioning that there were only 18 true positives in the validation 

dataset, and all of them were predicted correctly by the model. 

       

Figure 14 - An example of a real-world test of the SCM. The left bar predicts the squat’s depth, and the bar on the right predicts the 

gaze. 

Real-world tests were conducted. In this test, poor squat technique was purposely present for certain reps to 

test the model’s effectiveness. Figure 14 shows a squat that begins with a downward gaze, then reaches the 

correct depth and returns to a quarter squat position. The aim of these tests was to confirm that the model 

worked as specified in real-life situations. The average speed of the pipeline during these tests was 382 ms. 

During these tests, it was found that the depth classifier could effectively predict the user's depth. The test 

shown in Figure 14 had an accuracy of 83.8% and an F1 score of 86.1% for the depth category. With respect 

to the gaze category, in the first frame of Figure 14, a downward gaze is present, but the SCMs gaze predictor 

does not activate. In the second frame, when the correct depth is present, but the gaze is forward, the gaze 

predictor is activated. Obtaining accuracy, precision, recall and F1 scores for both the gaze and spine categories 

was not possible due to the inability to label the real-life data frame by frame. To label spine neutrality, the 3 

spine annotations (see section 3.2.1) provided by the InfiniteForm dataset were required and therefore was not 

available for real-world tests.  
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5 Discussion 

5.1 Review of Project Objectives 

5.1.1 Objective 1: Define metrics to quantitatively assess a person’s squat form. 

This objective was met. During the literature review (see section 2.1), it was found that there were 5 features 

of a squat that determined its quality. These were the depth of the squat, having a neutral spine, ensuring that 

the gaze is forward or upwards, ensuring heels are on the ground, and the knees should track over the toes. It 

was also found that foot stance and width had no bearing on the squat form and quality except for the 

comfortability of the squatter. Out of these, 3 metrics were chosen: squat depth, spine neutrality and gaze 

direction. These metrics were the easiest to evaluate based on the information that was available (i.e. dataset 

annotations). It is also important to note that it is possible for a person to tick the boxes of the 5 features and 

still result in a subpar squat. When reviewing a squat, a holistic view that considers body dimensions like femur 

length may result in a more accurate analysis of a person’s squat. The quality of a squat is not entirely 

quantitative, so including an “overall” label that is based on a professional’s judgment may improve the 

model’s ability to assess squat form. 

5.1.2 Objective 2: Conduct a review of current sensor technology. 

This objective was also met. It was found that there were various types of sensor technology available. Some 

were more general, like smartwatches, and some were more sophisticated and specific, such as IMUs and 

computer vision. It was found that IMUs had been used before to evaluate squat quality, however, IMUs are 

expensive and are not geared towards general public use but rather to researchers. It was also found that 

computer vision and pose estimation is a method that has been used in the past for squat evaluation. However, 

the squat was not evaluated on a frame-by-frame basis, which does not allow for near-instant feedback.  

5.1.3 Objective 3: Develop a system for real-time analysis of a user’s squat that is available to all.  

This objective was partially met. Pose estimation was the system developed to analyse squat form in real time. 

This was due to the possible development of a free, easy-to-use platform that anyone can download to assess 

their own squat. A pipeline was devised, which began with the BlazePose estimation model, which would 

extract landmark data from a frame. Then, this data would be passed into the squat classification model and an 

output classification would be presented. This pipeline allows for the quickest feedback loop as the model is 

constantly being run on every frame that is passed in. The model took an average of 382 ms per frame. For a 

live feedback loop, this is relatively slow as a frame passes every 33 ms, meaning by the time the model has 

assessed a squat, 10 frames would have already passed. For each category the model performed differently. It 

performed the best for the depth metric with high accuracy, precision and recall. However, for the spine and 

gaze, it did not work as well. Small-scale real-life tests were also conducted. These tests confirmed that the 

depth category is precise and accurate and can predict when the user’s depth is correct. It is thought that the 

depth category can be correctly classified due to the significant distinction between a squat with a good depth 

and a bad one. The model was able to recognise depth patterns as they were consistent for every squat. 

However, for the gaze category, it is clear that the SCM had picked up on patterns related to depth as it activates 

when a user is at the correct depth rather than when they have a downward gaze. This is assumed to be because 

of dataset imbalance. When completing a squat, the bottom of the squat is the point where the most effort is 

exerted. At that point, there is a greater chance for form to suffer. Therefore, there is a higher chance that a 

user’s gaze is lowered. As there were a small number of frames with a downward gaze in the dataset, it was 

assumed that the SCMs gaze classifier picked up on the depth pattern rather than the downward gaze patterns 

as that was the more apparent pattern. For spine neutrality, the model never predicts a non-neutral, even when 

multiple reps in the real-world test had a non-neutral spine. This was once again because of the lack of diversity 

in the dataset. Also, the definition for labelling the spine as non-neutral was based on how straight it was; 

however, a straight spine does not necessarily constitute a neutral spine and defining a better way to determine 

if a spine was neutral may improve results. 

5.2 Limitations 

The greatest limitation was that of the dataset. The synthetic squat dataset by InfiniteForm was not designed 

to classify incorrect form. None of the data points had a squat that was purposely incorrect. This made it harder 

for the SCM to detect gaze and spine faults. If a dataset where participants purposely created errors in their 



18  

squats was used, it would have made it easier for the model to learn patterns. Due to time constraints and the 

difficulty of labelling such a dataset, this was not carried out.  

Another way the model could have been improved was by isolating landmarks specifically for each category. 

For example, when calculating if the squatter’s gaze is correct, the only landmarks that are of interest are the 

face landmarks (landmarks 0-10 in Figure 3a). This would reduce the computational power needed as only the 

landmarks that are required are used as input data. Real-world tests showed that the gaze classifier picked up 

on the wrong patterns, if the landmarks that were important for gaze classification were isolated it would have 

eliminated that possibility. This could also speed up the model as it can focus on patterns of the keypoints that 

are important allowing for better performance and more responsive feedback to the user. 

The use of a linear regression model as opposed to binary classification for squat depth may have helped to 

provide more accurate depth information to the user. Currently, the model only determines if the squat is in 

range or out of range with no in-between. Using a linear regression model, the SCM can more accurately 

determine the depth of the squat and give the user specific information on how deep they are in their squat by 

percentage. This will help prevent users from squatting too deep, which isn’t accounted for in the current 

model. 

Finally, using a larger variety of people for both the dataset and the real-world tests would have helped improve 

the model’s effectiveness. There is a high correlation between squat mechanics and a person’s lower extremity 

biomechanics [46]. A person with a longer femur will squat differently than someone with a shorter femur; 

however, both squats may be considered good. Having a balanced data set that accounts for these differences 

is important. 

5.3 Future Work 

Future work may include recreating the SCM using a dataset that is more suitable for a squat quality 

classification task. Using a faster pose estimation model such as MoveNet Lightning [29], will speed up 

runtime, allowing for better performance. Isolating landmarks is also integral to ensure each category can learn 

the correct patterns and will also speed up train time and runtime. Also, implementing a linear regression model 

for depth classification will present more intricate detail about the user’s squat. Similar models could also be 

developed for use in other exercises like deadlifts and bench press. It could also be adapted for use in sports. 

Being able to receive real-time feedback about form in sports like football or basketball during solo training 

sessions will be integral to making rapid progress. However, as with most problems solved with machine 

learning, obtaining a diverse and well-annotated dataset to train any model is the greatest problem. 

6 Conclusion 

A SCM was developed that could accurately classify whether a person’s squat was in the correct depth with 

an accuracy of 97.3%. However, when classifying the neutrality of the spine or the gaze direction, the model 

picked up incorrect patterns, resulting in poor classification. Future work could include optimising the current 

model using a more suitable dataset or creating a similar model for other exercises or sports. 
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